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A HIGHER-ORDER THEORY FOR 
GEOMETRICALLY NONLINEAR ANALYSIS OF 

COMPOSITE LAMINATES 

J. N. Reddy and C. F. Liu 
Department of Engineering Science and Mechanics 

B1 acksburg, Virginia 
Virginia Polytechnic Institute and State University 

ABSTRACT 

A refined, third-order laminate theory that accounts for the 

transverse shear strains is developed, the Navier solutions are derived, 

and its finite element models are developed. The theory allows 

parabolic description of the transverse shear stresses, and therefore 

the shear correction factors of the usual shear deformation theory are 

not required in the present theory. The theory also accounts for small 

strains but moderately large displacements (i.e., von Karman strains). 

Closed-form solutions o f  the linear theory for certain cross-ply and 

angle-ply plates and cross-ply shells are derived. The finite-element 

model is based on independent approximations of the displacements and 

bending moments (i .e. , mixed formulation), and therefore only C"- 

approximations are required. Further, the mixed variational 

formulations developed herein suggest that the bending moments can be 

interpolated using discontinuous approximations (across i nterelement 

boundaries). The finite element is used to analyze cross-ply and angle- 

ply laminated plates and shells for bending and natural vibration. Many 

of the numerical results presented here for laminated shells should 

serve as references for future investigations. 

V 



1. INTRODUCTION 

1.1 Background 

The analyses of composite laminates in the past have been based on 

one of the following two classes of theories: 

(i) Three-dimensional elasticity theory 

(ii) Laminated plate theories 

In three-dimensional elasticity theory, each layer is treated as an 

elastic continuum with possibly distinct material properties in adjacent 

layers. Thus the number of governing differential equations will be 3N, 

where N is the number of layers in the laminate. At the interface of 

two layers, the continuity of displacements and stresses give additional 

relations. Solution of the equations becomes intractable as the number 

of layers becomes large. 

In a 'laminated plate theory', the laminate is assumed to be in a 

state of plane stress, the individual laminae are assumed to be elastic, 

and perfect bonding between layers is assumed. The laminate properties 

(i .e. stiffnesses) are obtained by integrating the lamina properties 

through the thickness. Thus, laminate plate theories are equivalent 

single-layer theories. In the 'classical laminate plate theory' (CLPT), 

which is an extension of the classical plate theory (CPT) to laminated 

plates, the transverse stress components are ignored. 

laminate plate theory is adequate for many engineering problems. 

However, laminated plates made of advanced filamentary composite 

materials, whose elastic to shear modulus ratios are very large, are 

susceptible to thickness effects because their effective transverse 

shear moduli are significantly smaller than the effective elastic moduli 

The classical 
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dsn 

along fiber directions. 

render the classical laminated plate theory inadequate for the analysis 

of thick composite plates. 

These high ratios of elastic to shear moduli 

The first, stress-based, shear deformation plate theory is due to 

Reissner [l-31. The theory is based on a linear distribution of the 

, n = 0,1,2, ... 
s=O 

inplane normal and shear stresses through the thickness, 

where (a l ,u  ) and a6 are the normal and shear 

are the associated bending moments (which are 
2 stresses, (M1,M2) and M6 

functions of the inplane 

coordinates x and y), z is the thickness coordinate and h is the total 

thickness of the plate. The distribution of the transverse normal and 

and u ) is determined from the equilibrium shear stresses (a3, a4 

equations of the three-dimensional elasticity theory. 
5 

The differential 

equations and the boundary conditions of the theory were obtained using 

Castigliano’s theorem of least work. 

The origin of displacement-based theories is attributed to Basset 

[ 4 ] .  Basset assumed that the displacement components in a shell can be 

expanded in a series of powers of the thickness coordinate 5. For 

example, the displacement component u 1  along the c1 coordinate in the 
surface of the shell can be written in the form 

(1.2a) 

where c1 and c2 are the curvilinear coordinates in the middle surface of 
the shell, and uin) have the meaning 

(1.2b) 
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Basset’s work did not receive as much attention as it deserves. In a 

1949 NACA technical note, Hi ldebrand, Rei ssner and Thomas [ 51 presented 

a displacement-based shear deformation theory for shells (also see 

Hencky [6]). They assumed the following displacement field, 

principle of minimum total potential energy. This approach results in 

t 

five differential equations in the five displacement functions, u, v, 

Y. w, bX, and 4 

The shear deformation theory based on the displacement field in Eq. 

(1.3) for plates is often referred to as the Mindlin plate theory. 

Mindlin [7] presented a complete dynamic theory of isotropic plates 

based on the displacement field (1.3) taken from Hencky [6]. We shall 

refer to the shear deformation theory based on the displacement field 

(1.3) as the first-order shear deformation theory. 

A generalization of the first-order shear deformation plate theory 

for homogeneous isotropic plates to arbitrarily laminated anisotropic 

plates is due to Yang, Norris, and Stavsky [8] and Whitney and Pagano 

[9]. Extensions of the classical von Karman plate theory [lo] to shear 

deformation theories can be found in the works of Reissner [11,12] 

Medwadowski [13], Schmidt [14] and Reddy [15]. 

Higher-order, displacement-based, shear deformation theories have 

been investigated by Librescu [16] and Lo, Christensen and Wu [171. In 
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these higher-order theor ies,  w i t h  each a d d i t i o n a l  power o f  t h e  th ickness 

coordinate an a d d i t i o n a l  dependent unknown i s  in t roduced i n t o  t h e  

theory. Levinson [ 181 and Murthy [ 191 presented t h i r d - o r d e r  t h e o r i e s  

t h a t  assume transverse i n e x t e n s i b i l i t y .  

were reduced t o  f i v e  by r e q u i r i n g  t h a t  the t ransverse shear s t resses 

vanish on the  bounding planes o f  t h e  p la te .  

the equ i l ib r ium equations o f  the  f i r s t - o r d e r  theory  i n  t h e i r  analys is .  

As a r e s u l t ,  the higher-order terms o f  the displacement f i e l d  a re  

accounted f o r  i n  the  c a l c u l a t i o n  o f  the  s t r a i n s  b u t  no t  i n  the  governing 

d i f f e r e n t i a l  equations o r  i n  t h e  boundary condi t ions.  These t h e o r i e s  

can be shown (see Librescu and Reddy [ZO]) t o  be the  same as those 

described by Reissner 11-31. Recently, Reddy [21-231 developed a new 

th i rd -order  p l a t e  theory,  which i s  extended i n  t h e  present study t o  

laminated she l l s .  

The n ine  displacement f u n c t i o n s  

However, both authors used 

1.2 Review o f  L i t e r a t u r e  

Shel l  s t ruc tu res  are abundant on t h e  e a r t h  and i n  space. Use o f  

s h e l l  s t ruc tu res  dates back t o  ancient Rome, where t h e  r o o f s  o f  t h e  

Pantheon can be c l a s s i f i e d  today as t h i c k  she l l s .  She l l  s t r u c t u r e s  f o r  

c a l  and 

t h e  

a long t ime have been b u i l t  by experience and i n t u i t i o n .  No l o g  

s c i e n t i f i c  study had been conducted on the design o f  s h e l l s  u n t i  

eighteenth century. 

The e a r l i e s t  need f o r  design c r i t e r i o n  f o r  s h e l l  s t r u c t u r e s  

probably came w i t h  the development of t h e  steam engine and i t s  a t tendant  

accessories. However, i t  was n o t  u n t i l  1888, by Love [ 2 4 ] ,  t h a t  t h e  

f i r s t  general theory was presented. Subsequent t h e o r e t i c a l  e f f o r t s  have 
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been directed towards improvements of Love's formulation and the 

solutions of the associated differential equations. 

An ideal theory of shells require a realistic modeling of the 

actual geometry and material properties, and an appropriate description 

of the deformation. Even if we can take care of these requirements and 

derive the governing equations, analytical solutions to most shell 

problems are nevertheless limited in scope, and in general do not apply 

to arbitrary shapes, load distributions, and boundary conditions. 

Consequently, numerical approximation methods must be used to predict 

the actual behavior. 

Many of the classical theories were developed originally for thin 

elastic shells, and are based on the Love-Kirchhoff assumptions (or the 

first approximation theory): 

undeformed middle surface remain plane and normal to the deformed middle 

surface, (2) the normal stresses perpendicular to the middle surface can 

be neglected in the stress-strain relations, and ( 3 )  the transverse 

displacement is independent of the thickness coordinate. The first 

assumption leads to the neglect of the transverse shear strains. 

Surveys of various classical shell theories can be found in the works of 

Naghdi [25]  and Bert [26 ] .  These theories, known as the Love's first 

approximation theories (see Love 1241) are expected to yield 

sufficiently accurate results when (i) the lateral dimension-to- 

thickness ratio (a/h) is large; (ii) the dynamic excitations are within 

the low-frequency range; (iii) the material anisotropy is not severe. 

However, application of such theories to layered anisotropic composite 

(1) plane sections normal to the 
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shells could lead to as much as 30% or more errors in deflections, 

stresses, and frequencies. 

As noted by Koiter [ 2 7 ]  , refinements to Love's first approximation 
theory o f  thin elastic shells are meaningless, unless the effects of 

transverse shear and normal stresses are taken into account in the 

refined theory. The transverse normal stress is, in general, of order 

h/R (thickness to radius ratio) times the bending stresses, whereas the 

transverse shear stresses, obtained from equilibrium conditions, are of 

order h/a (thickness to the length of long side of the panel) times the 

bending stresses. Therefore, for a/R < 10, the transverse normal stress 

is negligible compared to the transverse shear stresses. 

Ambartsumyan [28,29] was considered to be the first to analyze 

laminates that incorporated the bending-stretching coupling due to 

material anisotropy. The laminates that Ambartsumyan analyzed are now 

known as laminated orthotropic shells because the individual orthotropic 

layers were oriented such that the principal axes of material symmetry 

coincided with the principal coordinates of the shell reference 

surface. In 1962, Dong, Pister and Taylor [30] formulated a theory of 

thin shells laminated of anisotropic shells. 

presented an analysis of laminated anisotropic cylindrical shells using 

Flugge's shell theory [32]. A first approximation theory for the 

unsymmetric deformation of nonhomogeneous, anisotropic, elastic 

cylindrical shells was derived by Widera and his colleagues [33,34] by 

means of asymptotic integration of the elasticity equation. 

homogeneous, isotropic material, the theory reduced to the Donnell's 

Cheng and Ho [31] 

For a 
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equation. An exposition of various shell theories can be found in the 

article by Bert [261 and monograph by Librescu [35]. 

The effect of transverse shear deformation and transverse isotropy 

as well as thermal expansion through the shell thickness were considered 

by Gulati and Essenberg [361 and Zukas and Vinson [37]. 

[38] presented a theory applicable to layered, orthotropic cylindrical 

shells. 

theory. 

displacements in the surface of the shell are expanded as linear 

functions of the thickness coordinate and the transverse displacement is 

expanded as a quadratic function of the thickness coordinate. Recently, 

Reddy [40] presented a shear deformation version o f  the Sanders shell 

theory for laminated composite shells. 

constant transverse shear stresses through thickness, and therefore 

require a correction to the transverse shear stiffness. 

Dong and Tso 

Whitney and Sun [391 developed a higher-order shear deformation 

This theory is based on a displacement field in which the 

Such theories account for 

As far as the finite element analysis of shells i s  concerned, the 

early works can be attributed to those of Dong [41], Dong and Selna 

[ 42) , Wilson and Parsons [43] , and Schmit and Monforton [ 441. The 

studies in [41-441 are confined to the analysis of orthotropic shells of 

revolution. 

composite shells include the works of Panda and Natarajan [45], 

Shivakumar and Krishna Murty [46], Rao [471, Seide and Chang [481, 

Venkatesh and Rao [49], Reddy and his colleagues [15,50-511, and Noor 

and his col leagues [ 52-541. 

Other finite element analyses of laminated anisotropic 
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1.3 Present Study 

While the three-dimensional theories [ 55-60] give more accurate 

results than the lamination (classical or shear deformation) theories, 

they are intractable. For example, the 'local' theory of Pagano [ 60 ]  

results in a mathematical model consisting of 23N partial differential 

equations in the laminate's midplane coordinates and 7N edge boundary 

conditions, where N is the number of layers in the laminate. The 

computational costs, especially for geometrically nonlinear problems or 

transient analysis using the finite element method, preclude the use of 

such a theory. 

631, the refined plate theory provides improved global response 

estimates for deflections, vibration frequencies and buckling loads for 

laminated composite plates. 

findings, deals with the extention of the third-order plate theory of 

Reddy [21-231 to laminated composite shells. The theory also accounts 

for the von Karman strains. The resulting theory contains, as special 

cases, the classical and first-order theories of plates and shells. 

Mixed variational formulations and associated finite-element models are 

developed in this study. The significant and novel contributions of the 

research conducted (in addition to those reported in the first year's 

report [ 2 3 ] )  are: 

As demonstrated by Reddy [21-231 and his colleagues [61- 

The present study, motivated by the above 

1. The formulation of a new third-order theory of laminated shells 

that accounts for a parabolic distribution of the transverse 

shear stresses and the von Karman strains. 

2. The derivation of the exact solutions of the new theory for 

certain simply supported laminated composite shells. 
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3. The development of a mixed variational principle for the new 

theory of shells, which yields as special cases those of the 

classical (e.g., Love-Kirchhoff) and the first-order theory. 

4. The development of a mixed, Co-finite-element and its 

application to the bending and vibration analysis of laminated 

composite shells. 



2. FORMULATION OF THE NEW THEORY 

2.1 Kinematics 

Let (c1,&2,s) denote the orthogonal curvilinear coordinates (or 

shell coordinates) such that the 

curvature on the midsurface s=O, 

perpendicular to the surface s=O 

the lines of principal curvature 

e l -  and c2-curves are lines of 

and 5-curves are straight lines 

. For cylindrical and spherical shells 

coincide with the coordinate lines. 

The values of the principal radii of curvature of the middle surface are 

denoted by R1 and R2. 

The position vector of a point on the middle surface is denoted 

by r, and the position of a point at distance 5 from the middle surface 

is denoted by R. .., The distance ds between points ( E , ~ , ~ ~ , O )  and (cl+dcl, 

c2+dc2,0) is determined by (see Fig. 2.1) 

.., 

(ds)' = dr I dr .., 

2 2 
= + a2(dc2) 

ar 
I 

where dr = sldcl + g2dc2, the vectors g1 and g2 (gi = -) are tangent 
I . . , I  aci 

to the t1 and c2 coordinate lines, and a1 and a2 are the surface metrics 

.., .., I I 

The distance dS between points ( c1,c2,c) and ((l+dc1,c2+dc2,s+dr) is 

given by 

(dS)2 = dR dR I 
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Figure 2 .1  Geometry and  stress resultants o f  a shell  
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aR aR 
- ac1 at2 2 as 

- a R  - where dR = - de1 + - dg + 

coefficients 

ds, and L1, L2 and L3 are the Lame’ 

aR aR ... It should be noted that the vectors s1 E and G E are parallel 
-2 ac2 

to the vectors g1 and g2, respectively. - -, 

2.2 Displacement Field 

The shell under consideration is composed of a finite number of 

orthotropic layers of uniform thickness (see Fig. 2.2). Let N denote 

the number of layers in the shell, and ck and s ~ - ~  be the top and bottom 

5-coordinates of the k-th layer. Before we proceed, a set of 

simplifying assumptions that provides a reasonable description of the 

behaviors are as follows: 

1, thickness to radius and other dimensions of shell are small. 

2 .  transverse normal stress is negligible 

3. strains are small, yet displacements can be moderately large 

compared to thickness 

Following the procedure similar to that presented in [21] for flat 

plates, we begin with the following displacement field: 

where t is time, (U,V,.) are the displacements along the (g1,c2,c) 
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f 

U 
a, > 

0 
7 
0 
-0 

ii 
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coordinates, (u,v,w) are the  displacements o f  a p o i n t  on the  middle 

surface and $1 and $2 are the  r o t a t i o n s  a t  5 = 0 o f  normals t o  the  

midsurface w i t h  respect  t o  the  c2- and cl-axes, respec t i ve l y .  A l l  o f  

(u,v,w,~l,~2,bl,b2,el,e2) are funct ions of el and 6 only.  The 2 
p a r t i c u l a r  choice o f  the  displacement f i e l d  i n  Eq. (2.5) i s  d i c t a t e d  by 

the  des i re  t o  represent the  t ransverse shear s t r a i n s  by quadra t ic  

funct ions o f  t h e  th ickness coordinate,  5, and by the  requirement t h a t  

the  transverse normal s t r a i n  be zero. The kinematics o f  deformat ion o f  

a t ransverse normal i n  var ious  theo r ies  i s  shown i n  F ig.  2.3. 

The func t ions  bi and ei w i l l  be determined us ing the  c o n d i t i o n  t h a t  

the transverse shear stresses, ul3 = 

and bottom surfaces o f  t he  she l l :  

and aZ3 = vanish on the  top  u4 

These condi t ions are equ iva len t  to ,  f o r  s h e l l s  laminated of o r t h o t r o p i c  

layers,  t he  requirement t h a t  t he  corresponding s t r a i n s  be zero on these 

surfaces. 

r a d i i  of  curvature are g iven by 

The transverse shear s t r a i n s  o f  a s h e l l  w i t h  two p r i n c i p a l  

a i  1 a i  u = -  + - - - -  
‘5 as a1  a t 1  R~ 

- -  U 1 aw u - + 41 + 2sal + 3s2e l  + - - - - 
R1 OL1 a %  R1 

(2.7) 

1 aw v V - - -  + b2 + 2cb2 + 3s2e2 + -- - - 
R2 O2 a %  R2 

Se t t i ng  E5(c1,c2,k 7 h ,t) and ~ q ( t l r S 2 9  k 7 h ,t) t o  zero, we o b t a i n  
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1 
UNDEFORMED 

DEFORMED IN CLASSICAL 

(KIRCHHOFF) THEORY 

DEFORMED IN THE THIRD 
ORDER (PRESENT) THEORY 

F igure  2.3 Assumed deformat ion pa t te rns  o f  the  t ransverse normals 
i n  var ious displacement-based theor ies.  
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- 4 1 aw 

- 4 1 aw 

e 1  - - 2 ( 4 1  + - -) 

e2 - - 2 (@2 + (r -) 

3h O 1  a c l  

3h 2 ac2 

Substituting Eq. (2.8) into Eq. (2.5), we obtain 

5 - v = (1 + -)v 
R, c 

This displacement fie 

3 4  1 aw 

3 4  1 aw 

3h 

(2.9) 

d is used to compute the strains and 

stresses, and then the equations of motion are obtained using the 

dynamic analog of the principle of virtual work. 

2.3 Strain-Displacement Relations 

Substituting Eq. (2.9) into the strai n-di spl acement re1 at ions 

referred to an orthogonal curvilinear coordinate system, we obtain 

where 

(2.10) 



17 

0 -  aw 1 -  4 aw 
h a x2 

K4 - - 2 (Cb2 + -) €4 - @2 + 

0 -  aw 1 4 aw 
h axl 

K5 = - 2 (e1 + -) €5 - @1 + q 

a @ 2  a@l + -  O a v + - + - -  au aw aw 0 
€6 = a x2 axl ax2 ’ K6 = ax2 

(2.11) 

Here xi denote the Cartesian coordinates (dxi = aidcis i = 1,Z). 

2.4 Constitutive Relations 

The stress-strain relations f o r  the k-th lamina in the lamina 

coordinates are given by 

0 

0 

Q66 
- ( k )  

0 

0 

0 

- (k) 
Q44 

€1 

€ 6  

€4  

€ 5  (k) 

(2.12) 

where vi ( k )  are the plane stress reduced stiffnesses o f  the k-th lamina 
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in the lamina coordinate system. 

in terms of the engineering constants of a lamina: 

The coefficients qij can be expressed 

(2.13) 

- - - 
‘44 = ‘23 Q55 = ‘13 Q66 = ‘12 

To determine the laminate constitutive equations, Eq. (2.12) should be 

transformed to the laminate coordinates. We obtain 

r4) = 1;: r4} (2.14) 
‘5 ( k )  55 ( k )  €5 (k )  

where 
4 2 2 4 - 

Q,, = Qll cos e + 2(Q12 + 2066)~in e cos e + gz2 sin e 

- 4066)sin 2 e cos 2 e + Q12(sin 4 e + cos 4 e )  Q12 = (Q11 + Q22 

- 4 2 2 4 Q,, = Qll sin e + 2(Q1, + 2Q66)~in e cos e + Q,, cos e 

Q,, = (Qll + qz2 - 2Q12 - ~ T j ~ ~ ) s i n  2 e cos 2 e + Q66(~in 4 e + cos 4 e) 

2 2 - 
Q4, = Q4, cos e + V,, sin e 
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2 2 - 
= Q,, cos e t q44 s i n  e Q55 (2.15) 

2.5 Equations o f  Mot ion 

The dynamic vers ion  of the  p r i n c i p l e  o f  v i r t u a l  work f o r  t h e  

present case y i e l d s  

dxldx2}dc - q6wdxldx2 - 6(J h/2 { $ k ) ~ [  (t)2+(t)Z+(~)2]dxldx2}dc) ] d t  

D -h/2 Q 

1617 ( a  2" 2" 
- - -  - + 9) + IlW)6W av 

2 9h4 axl ax2 
+ ('3 % + '5 

(2.16) 

where q i s  t he  d i s t r i b u t e d  transverse load, Niy Miy e tc .  a re  t h e  

resu 1 tants ,  
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The inert? 

and 

(2.17) 

s Ti and Ti (i = 1,2,3,4,5) are defined by th, equations, 

T1 = I 1  + li;; 2 I 2  , 

4 4 - -  1 - 
I = I  + -  2 2 R 1  '3 3h 

4 4 
2 I5  

- -  1 - 
5 = I2 + 5 I3 3h2 I4 - 

l6 I 8 
3h 

- 
I 4  = I3 - - Z 1 5 + g h 4  7 

l6 I 4 I = -  
- 

3h 2 1 5 - 2  7 '  

l6 I 4 1' = - - 
3h 2 1 5 - 2  7 (2.18a) 
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The governing equations o f  motion can be derived from Eq. (2.16) by 

integrating the displacement gradients by parts and setting the 

coefficients o f  6u,6v,6w and 6'i (i = 1,2) to zero separately: 

a N 1  + - =  aN6 aw 
axl ax2 6u: - 

6v: - 

2 2 
a '6 ) 

a p 2 + 2  axlax2 

a91 aQ2 aK1 aK2 4 a2P1 
+2 2 (  2 

ax2 3h axl ax2 
axl ax2 h2 axl ( + - ) + -  - + - - -  - 6w: - 

- - - -  N1 N2 + N(w) = - I3 .; au - - a 4 ~  av  + T i  3 a42 + I1w 
I5  + %  3 R1 R2 

1617 ,aZ; + a2; 
7) - q - -  - 

9h4 axl 2 ax2 

aw aP1 aP6 - - 
2' + '4'1 - '5 + - -  + - K  4 - - -  ( + - )=I "  Q1 h2 1 3h2 axl ax2 641: - aM1 aM6 

axl  ax2 

(2.19) 

where 

aw =) (2.20) a aw aw a 
(N1 + N6 + - (N6 + N2 ax2 N(w) = - 

axl ax2 

The essential (i .e., geometric) and natural boundary conditions o f  the 

theory are given by: 
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Un’ Uns’ W ’  an’ aw as’ aw @n’ @ns (essent ia l  ) 

_ _ _ - I  

Nn’ Nns* Qn, Pn’ Ps’ Mn’ Mns (na tu ra l )  (2.21) 

where 
2 2 = n N  + n N  + 2 n n N  

‘n x 1  y 2  X Y 6  

Nns = (N2 - N ) n  n + N6(nx 2 2  - ny) 
1 X Y  

= nxP1 2 + n 2 P 
‘n Y 2  X Y 6  

+ 2n n P 

= (P2 - P ) n  n + P6(nx 2 2  - ny) 

= (M2 - M ) n  n + M6(nx 2 2  - ny) 

‘ns 1 X Y  

= nxM1 2 + n 2 M 
Mn Y 2  X Y 6  

Mns 1 X Y  

+ 2n n M 

aPn aPns 4 K  
- - aw aw 4 
Qn - Nn an + Nns + 3 (K + -) + Qn - -  

h2 as 

= n K  + n K  Kn x 1  y 2  

P n - - -  - 4 P  
.., 

3h2 - 
- - -  - 4 P  

‘ns 3h2 “’ - 
Mn = Mn - - 4 P  

3h2 - 
- -  4 P  

“ns = Mns 3h2 ns (2.22) 
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and nx and ny are the  d i r e c t i o n  cosines o f  the  u n i t  normal on the  

boundary o f  t he  laminate. 

The r e s u l t a n t s  can be expressed i n  terms o f  t he  s t r a i n  components 

I us ing Eqs. (2.10) and (2.12) i n  Eq. (2.14). We ge t  

Ni - - Ai j ~ g  + 6. .IC. 0 + E .  .K 2 
1 J  J 1 J  j 

Mi - - B i j ~ j  0 + D 

O + F  i j'j P. = E 
1 

2 + F..K 
jKj 1~ j 

jKj 1~ j 
2 O + H..K 

(i,j = 1,2,6) 
(2.23) 

0 1 
5 j  j 

K1 = D 5 c j  + F K 

where Aij, Elij, etc. are the  laminate s t i f fnesses ,  

( A .  B. . ,Di ,Ei j,Fi j,H. .) ij' ij 'J 

f o r  i,j = 1,2,4,5,6. 

(2.25) 



3. THE NAVIER SOLUTIONS 

3.1 Introduction 

Exact solutions of the partial differential equations (2.19) on 

arbitrary domains and for general conditions is not possible. However, 

for simply supported shells whose projection in the xlx2-plane is a 

rectangle, the linear version of Eq. (2.19) can be solved exactly, 

provided the lamination scheme is of antisymmetric cross-ply [Oo/900/ 

0°/90 O . . . ]  or symmetric cross-ply [0°/900...]s type. 

solution exists if the following stiffness coefficients are zero 1211: 

The Navier 

Fi6 = Hi6 = 0 , (i = 1,2) (3 .1 )  Ai6 = Bi6 - - Di6 - - Ei6 - - 

= o  A45 = O45 = F45 
The boundary conditions are assumed to be of the form, 

u(xl,O) = u(xl,b) = v(0,x2) = v(a,x2) = 0 

w(xl,O) = w(xl,b) = w(0,x2) = w(a,x2) = 0 

aw (0,x2) = - (a,x2) = 0 aw aw aw 
axl axl ax2 ax2 - ( ~ 1 ~ 0 )  = - (xl,b) = - 

N2(x1,0) = N (x ,b) = Nl(0,x2) = Nl(a,x2) = 0 2 1  

where a and b denote the lengths along the xl- and x2-directions, 

respectively (see Fig. 3.1). 

24 
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/ 

Figure3.1 The geometry and the  coordinate system f o r  a 
Projected area  of -she1 1 element 
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3.2 The Navier Solution 

Following the Naviw solution procedure (see Reddy [21]), we assume 

the following solution form that satisfies the boundary conditions in 

Eq. (3.2): 

m 

m 

where 

f (x ,x ) = cosax1sin~x2, f (x ,x ) = sinax C O S B X ~  

f3(x1,x2) = sinaxlsin~x2, a = mn/a, B = nn/b 

1 1 2  2 1 2  1 
(3.4) 

Substituting Eq. (3.3) into Eq. (2.19), we obtain 

where Qmn are the coefficients in the double Fourier expansion o f  the 

transverse load, 
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and the coefficients Mi j and Ci j(i,j = 1,Z ,... ,5) are given in Appendix 
~ A. 

Equation (3.5) can be solved for Umn,Vmn, etc., for each m and n, 

and then the solution is given by Eq. (3.3). 

are evaluated using a finite number o f  terms in the series. 

vibration analysis, Eq. (3.5) can be expressed as an eigenvalue 

equation, 

The series in Eq, (3.3) 

For free 
i 

I ( [ C I  - UZIMl){A} = (0) (3.7) 

where {A} = {Umn,Vmn,Wmn,m,!,n,m~n}T, and w is the frequency of natural 

vibration. For static bending analysis, Eq. (3.5) becomes 



4. MIXED VARIATIONAL PRINCIPLES 

4 .1  Introduction 

The variational formulations used for developing plate and shell 

elements can be classified into three major categories: 

(i) formulations based on the principle o f  virtual displacements (or the 

principle of total potential energy), (ii) formulations based on the 

principle of virtual forces (or the principle of complementary energy) 

and (iii) formulations based on mixed variational principles(Hu-Washizu- 

Reissner's principles). 

formulations are called, respectively, the displacement models, 

equilibrium models and mixed models. 

The finite-element models based on these 

In the principle of virtual displacements, one assumes that the 

kinematic relations (i .e. , strain-displacement relations and geometric 
boundary conditions) are satisfied exactly (i .e. , point-wise) by the 
displacement field, and the equilibrium equations and force boundary 

conditions are derived as the Euler equations. No a-priori assumption 

concerning the constitutive behavior (i .e. , stress-strain relations) is 
necessary in using the principle. The principle of (the minimum) total 

potential energy is a special case of the principle of virtual 

displacements applied to solid bodies that are characterized by the 

strain energy function U such that 

a U ( E .  .) 

ij ij 
--J-J-=. 

a E  

where E . .  and uij are the components of strain and stress tensors, 

respectively. 
1 J  

When the principle of total potential energy is used to 
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develop a finite-element model of a shell theory, the kinematic 

relations are satisfied point-wise but the equilibrium equations are met 

only in an integral (or variational) sense. The principle of 

complementary potential energy, a special case of the principle of 

virtual forces, can be used to develop equilibrium models that satisfy 

the equilibrium equations point-wise but meet the strain compatibility 

only in a variational sense. 

There are a number of mixed variational principles in elasticity 

(see [64-711). The phrase 'mixed' is used t o  imply the fact that both 

the displacement (or primal) variables and (some of the) force (or dual) 

variables are given equal importance in the variational formulations. 

The associated finite-element models use independent approximations of 

dependent variables appearing in the variational formulation. There are 

in which both primal and dual 

y in the interior and on the 

two kinds of mixed models: (i) models 

variables are interpolated independent 

boundary of an element, (ii) models in which the variables are 

interpolated inside the element and their values on the boundary are 

interpolated by the boundary values of the interpolation. The first 

kind are often termed hybrid models, and the second kind are known 

simply as the mixed models. In the present study the second kind (i.e., 

mixed model) will be discussed. 

4.2 Variational Principles 

To develop a mixed variational statement of the third-order 

laminate theory, we rewrite Eq. (2.23) in matrix notation as follows: 

{ N }  = [ A * ~ { E ~ }  + [B*I{M} + IE*I{P} 
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t o  
-{K’} = [B*1 { E  } - [D*l{M} - [F*l{P} 

-{K} = [E*] { E  } - [F*lt{M} - [H*]{P} t o  

where 

{KC} = - w 1 a w 2  
ay R2 2 ay 
a v  + - + - (-) 

au av aw aw 1 
ay ax ax ay - + -  + - -  

A c1 = 2 and c = - 4 
3h h2 

[B*] = [B][D*] + [E][F*] 

[E*] = [B][F*] + [E][H*] 

(not symmetric) 

(not symmetric) 

- 

- 

[Dl [FI 

[F*I [H*l [FI [HI 
(4.2) 

Note that in this part the notation x = x1 and y = x2 is used, and [ I t 
denotes the transpose o f  a vector or matrix. 

To develop a mixed variational statement o f  the third-order 

laminate theory, the generalized displacements (u, v, w, 41, 

generalized moments (MI, M2, Me, PI, P2, P6) are treated as the 

dependent variables. 

and 
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1 o t  
= s a [y { E  1 + { E O } ~ ( [ B * ] { M }  + [E* ] {p } )  

A A A 

- J- (Nnun + Nsus + Qnw + Mn+,, + M,$,)ds 
r 

(4.3) 

where the q u a n t i t i e s  w i t h  a ha t  over them denote s p e c i f i e d  values, and 

Qn = Qlnx + Q2ny 

un = unx + vny , us = -uny + vnx 

a - n  - - n  - a 
an x ax y ay ' as x ay y ax 

a a _ -  a - n  - a + n  - - -  

2 2 2 2  Nn = N n + 2N n n + N2ny , NS = (N2 - N )n n + N6(nx - ny) 
l x  6 X Y  1 X Y  

w i t h  

(4.4) 

(4.5) 
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Note that the bending moments (MI, M2, M6) do not enter the set of 

essential boundary conditions, and the resultants (PI, P2, P6) do not 

enter the set of natural boundary conditions also. 

The (mixed) variational principle corresponding to the functional 

in Eq. (4.3) can be stated as follows. 

laminate can assume, the one that renders the functional nH1 stational-y 

also satisfies the equations of equilibrium (2.19) and the kinematic- 

constitutive equations [i.e., the last two equations of Eq. (4.3)]. 

Of all possible configurations a 

We note that the variational statement in Eq. (4.3) contains the 

second-order derivatives of the transverse deflection w (through {K}). 

To relax the continuity requirements on w, we integrate the 

term {P}t{~} by parts to trade the differentiation to {P}. We obtain 

A A A A 

aw 
en an 9 e~ as 

- -  - aw = -  
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I 

We note that the stress resultants Pn and Ps (hence PI, P2 and P6) 

enter the set of essential boundary conditions in the case of the second 

mixed formulation of the higer-order theory. As special cases, the 

mixed variational statements for the classical and the first-order 

theories can be obtained from Eq. (4.6) by setting appropriate terms to 

zero. 



5. FINITE-ELEMENT MODEL 

5.1 Introduction 

The mixed variational principles presented in Chapter 4 can be used 

to develop mixed finite-element models, which contain the bending 

moments as the primary variables along with the generalized 

displacements. Historically, at least with regard to bending of plates, 

the first mixed formulation is attributed to Herrmann [72,73] and Hellan 

[741 

Since the bending moments do not enter the set of essential 

boundary conditions, they are not required to be continuous across 

interelement boundaries. 

discontinuous (between elements) bi 1 inear or higher-order approximation 

of the bending moments. The present section deals with the development 

o f  a mixed model based on nH2. 

Thus, one can develop mixed models with 

5.2 Finite-Element Model 

Let n, 

represented 

where = n 

the domain (i.e., the midplane) of the laminate, be 

by a collection of finite elements 

(5.1) 
- 
n = u n , ne n af = empty for e # f 

e= 1 

u r  is the closure of the open domain a and r is its 

boundary. Over a typical element ne, each of the variables u, v, w, 

etc. are interpolated by expressions of the form 

N N N 
u = c U.$ , v = c V.$ , w = W.$ (5.2) j=l J j  j= 1 J j  j=l ~j 

34 
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etc. , where {s, .} denote the set of admissible interpolation functions 

and j denotes the number of functions (see Reddy and Putcha [64]). 

Although the same set of interpolation functions is used, for 

simplicity, to interpolate each of the dependent variables, in general, 

different sets of interpolation can be used for (u,v), w, (Q Q ), 

(M1,M2,M6) and (Pl,PZ,P6). From an examination of the variational 

statement in Eq. (4.6), it is clear that the linear, quadratic, etc., 

interpolation functions of the Lagrange type are admissible. 

resulting element is called a Co-element, because no derivative of the 

dependent variable is required to be continuous across interelement 

boundaries. 

J 

x y  Y 

The 

To develop the finite-element equations of a typical element, we 

first compute the strains, rotations, and resultants in terms of their 

finite element approximations. We have 

{ E O }  = {EOL}  + { E O N }  (5-3) 

= [HL]{nl} + [H"]{A*} (5.4) 
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aw aw 2 - -  a x  a y  

N 2  
,: $ [ H  ] { A  } (5.5) 

{&.ON} = [ HN]  {SA'} 
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{Q} = 

4 4  
[ H  ]{A } (5.11) 

(5.12) 

(5.13) 

aw , f = - and aw 
Y aY Here, fx = - ax 

{$i} = $2 0 . .  $ N I  9 E$i,x} = {$1,x $2,x * e *  $N,xl, etc .( 5.14) 

and {u}, for example, denotes the column o f  the nodal values of u. 

The finite-element model for t h e  refined shear deformation theory 

is derived from the variational statement in Eq. (4.6) over an 

element. 

element Q~ is given by 

The first variation o f  the functional in (4.6) for a typical 

0 = 5 [{~E~}~([A*~{C'} + [ B * l { M }  + [E*l{P})  

+- {sM}t({~s} + [B*] {E } - [ D * l { M }  - [F*l{P}) 
ne 

t o  
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+ { 6 P } t ( -  C1{Ks}  + [E*]{E'} - [F*l{M} - [H*l{P})  

- (Nn6un + N 6u + Qn6w + Mn6$,, + Ms6$, s s  
re 

+ c e SP + cles6Ps)ds I n  n 

Subs t i t u t i on  o f  Eqs. (5.2)-(5.14) 

Eq. (5.15), we ob ta in  

[Kl1] [K12] [K13] [K14] [K15] 

[K21] [kZ2]  [K23] [K24] [KZ5] 

[K31] [K3'] [K33] [K34] [K35] 

[K41] [K4'] [K43] [K44] [K45] 

[K51] [K52] [K53] [K54] [K55] 

where 

(5.15) 

n t o  the v a r i a t i o n a l  statement i n  

[K"] = [HLIt[A*][HL]dA , IF1} = 8 [ H 2 I t  ds 
ae re  

[K l2 1 ' 7 8  [HLIt[A*]([HN] + 2[Hol)dA 

ne 

(5.16) 

[K14] = [HLlt[B*I[H3]dA = [K 41 1 t 
ne 
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[K15] = [ [HLIt[E*][H3]dA = [K 51 ] t 
ae 

[iZ21 = s (Hol + [H N t  1 )  [A*l([Hol + 7 1 N  [H ])dA + s [ 

ae ae 

1 

[KZ41 = (([HOI + [H N t  I) [B*][H3])dA 
ne 

= .f ($ [H31t[B*lt([HN] + 2[Ho]))dA 
ne 

N t  I t  L t  ([Hol + [H I) [E*l[H31 + cl[H I [H I )dA [KZ5] = 

ne 

[K5'1 = ([H3lt[E*l([Ho1+ 7 1 N  [H I) + cl[HL1[H1J)dA 
ae 

[K -3 3 ] = .f [H 2 t -  ] [A][H2]dA, [icZ3l = S [ H  I t A  ] [A][H2]dA = [K -32 ] t 
ae ne 

L t  3 43 t = S [ H  I [ H  IdA = [K ] 
ae 

[K441 = - [H3lt[D*1[H31dA, 
Qe 

[K45] = - J [H3It[F*][H 3 ]dA = [K 54 ] t 
ae 

\ 
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[ K  55 1 = - I [H3It[H*1[H3]dA 
ne 

IF5} = 1 [H3It[Tlt ds 
ne 

(5.17) 

Clearly, the element stiffness matrix is pJ symmetric. 

case (i.e., [HN] = [O]), the element stiffness matrix is symmetric. 

For the linear 

The 

theories can be 

form of the 

finite-element models for the classical and first-order 

obtained as special cases from Eq. (5.16). An explicit 

coefficients of the stiffness matrix in Eq. (5.16) is g 

B. 

ven in Appendix 

5.3 Solution Procedure 

The assembled finite-element equations are of the form 

tKO(A)l{A) = {F) (5.18) 

where [ K O ]  is the assembled (direct) stiffness matrix, unsymmetric in 

general, and {A} is the global solution vector. 

matrix i s  a nonlinear function o f  the unknown solution, Eq. (5.18) 

should be solved iteratively. 

quite commonly used in the finite-element analysis o f  nonlinear 

problems: 

iteration methods. 

nonlinear equations. 

Because the stiffness 

Two iterative methods of analysis are 

the Picard-type direction iteration and the Newton-Raphson 

Here the Newton-Raphson method is used to solve the 



41 

Suppose that the solution is required for a load of P. The load is 

divided into a sequence of load steps AP1, A P ~ ,  ..., A P ~  such that P 

= c A P ~ .  At any load step i, Eq. (5.18) is solved iteratively to 

obtain the solution. At the end of the r-th iteration the solution for 

n 

i=l 

the next iteration is obtained solving the following equation 

(5.19) [K T r  (A )]{6Ar+'} = - {R} 3 -[K D r  (A )]{Ar} + {F}  

for the increment of the solution {sar+'}, and the total solution is 

computed from 
{Ar+'} = {Ar} + {&A r+l 

where [KT] is the tangent stiffness matrix, 

(5.20) 

(5.21) 

A geometrical explanation o f  the Newton-Raphson iteration is given in 

Fig. 5.1. 

For the finite-element models developed here, the tangent stiffness 

matrix is symmetric. 

model in Eq. (5.16) for plates (1/R1 = 1/R2 = 0) is given by 

For example, the tangent stiffness matrix for the 

[K21T] [KZzT] symm. 

[ K~~~ I. 5 1T [K ] .... ........ 
where 

[K1lT] = [K" 

[KZzT] = [kz2 

(5.22) 
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F 

Load, F 

0 
Displacement, U 

Figure 5.1 Geometric i n t e r p r e t a t i o n  o f  t he  Newton-Raphson 
i t e r a t i o n  f o r  the  s o l u t i o n  o f  one-parameter 
p rob l  ems. 
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[K31T] = [O], 

ae 

44 [K44T] = [K 

t[A*IIHNl + ["?[A*] [$l)dA{A2} 

t[B*][H3]dA){A4} 
ae 

32 [K32T] = [K 1 ,  

42T 24 , [K 1 = [K 

53 5 4T 54 [K53T] = [K 1 ,  [K 1 = [K 

-N [H 1 = 

[K33T] = [K33] 

K25] , 

K55] 

(5.23) 

For a1 1 coupled (i .e. bending-stretching coupling) problems, the 

mixed models of classical, first-order and third-order theories have 

respectively. If the 

, the element degrees 
six, eight and eleven degrees of freedom per node, 

bending moments are eliminated at the element leve 

of freedom can be reduced by 3 (see Fig. 5.2). 

The finite-element model (5.16) for the dynam 

form, 

[ K I M  + [ M I m  = {F}  

c case i s  of the 

(5.24) 

where [MI is the mass matrix (see Appendix 6). 

(5.24) can be written as 

For free vibration, Eq. 
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w.  / // 

2 

u1 

(a )  Displacement model 

/ 

J t *  

'a 1 1 
"1 M1 ' p l  

( b )  Hixed model 

Figure5.2 The displacement and mixed f i n i t e  elements 
f o r  the t h i r d - o r d e r  shear deformation theory 
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[ K ] { A }  = A [ M l { A }  (5 .25)  

where ;x i s  t h e  square of the  frequency. 

The eva lua t ion  o f  the  element matrices requ i res  numerical 

in tegra t ion .  

c o e f f i c i e n t s  associated w i t h  t h e  shear energy terms. More s p e c i f i c a l l y ,  

the  2 x 2 Gauss r u l e  i s  used f o r  shear terms and t h e  standard 3 x 3 

Gauss r u l e  i s  used f o r  the  bending terms when the nine node quadrat ic  

isoparametr ic element i s  considered. 

Reduced i n t e g r a t i o n  i s  used t o  evaluate the  s t i f f n e s s  



6. SAMPLE APPLICATIONS 

6.1 Introduction 

A number of representative problems are analyzed using the higher- 

order theory developed in the present study. 

included here illustrate the accuracy of the present theory. These 

problems are solved using the closed-form solutions presented in Section 

3.  

the mixed finite-element model described in Section 5. 

The first few problems 

Then problems that do not allow closed-form solutions are solved by 

The geometries of typical cylindrical and spherical shell panels 

are shown in Fig. 6.1. Of course, plates are derived as special cases 

from cylindrical or spherical shell panels. 

6.2 Exact Solutions 

It is well known that the series solution in Eq. ( 3 . 3 )  converges 

faster for uniform load than for a point load. 

distribution of the transverse load, the series reduces to a single 

term. 

For a sinusoidal 

1. Four-layer, cross-ply (0/90/90/0) square laminated flat plate under 

This example demonstrates the relative accuracy of the present 

sinusoidal load 

higher-order theory when compared to three-dimensional elasticity theory 

and to the first-order theory. Square, cross-ply laminates under 

simply-supported boundary conditions [see Eq. (3.2)] and a sinusoidal 

distribution of the transverse load are studied for deflections. The 

lamina properties are assumed to be 

46 
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Figure 6.1 Geometry of a typical cylindrical and spherical shell 
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Plots o f  the nondimensional center deflection [w = wE2h3)/qoa4] versus 

the side to thickness ratio (a/h) obtained using various theories are 

shown in Figure 6.2. The present third-order theory gives the closest 

solution to the three-dimensional elasticity solution [58] than either 

the first-order theory or the classical theory. 

2. An isotropic spherical shell segment under point load at the center. 

The problem data are (see Fig. 6.1 for the geometry) 

R1 = R2 = 96.0 in., a = b = 32.0 in., h = 0.1 in., 
7 El = E2 = 10 psi, v = 0.3, intensity of load = 100 lbs. 

A comparison of the center transverse deflection of the present theory 

(HSDT) with that obtained using the f irst-order shear deformation theory 

(FSDT) and classical shell theory (CST) for various terms in the series 

is presented in Table 1 (for simply supported boundary conditions). It 

should be noted that Vlasov [76] did not consider transverse shearing 

strains in his study. The difference between the values predicted by 

HSDT and FSOT is not significant for the thin isotropic shell problem 

considered here. 

3. Cross-ply spherical shell segments under sinusoidal, uniform, and 
point loads. 

The geometric parameters used are the same as those used in Problem 

2, and the material parameters used are the same as those used in 

Problem 1. The shell segments are assumed to be simply supported. 

Nondimensionalized center deflection of various cross-ply shells under 

sinusoidal, uniform, and point loads are presented in Tables 2 through 
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Table 1. Center d e f l e c t i o n  ( -w x 103) of a simply supported spher ica l  
s h e l l  segment under p o i n t  load a t  the  center  (see Fig. 6.1) 

Number o f  terms i n  the  ser ies  
h Theory N = 9  N = 49 N = 99 N = 149 N = 199 

CST 
Vlasov [79 ]  - - 

0.1 FSDT [40 ]  32.594 39.469 
HSDT 32.584 39.458 

0.32 FSDT 3.664 3.902 
HSDT 3.661 3.899 

1.6 FSDT 0.165 0.171 
HSDT 0.164 0.170 

3.2 FSDT 0.035 0.038 
HSDT 0.035 0.037 

6.4 FSDT 0.007 0.008 
HSDT 0.007 0.007 

39.591 
39.560 
39.724 
39.714 

3.919 
3.916 
0.174 
0.172 
0.039 
0.037 
0.009 
0.007 

- 
39.786 
39.775 

3.927 
3.923 
0.175 
0.172 
0.039 
0.037 
0.009 
0.007 

39.647 

39.814 
39.803 

3.932 
3.927 
0.176 
0.172 
0.040 
0.037 
0.009 
0.007 

- 
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4, respectively. 

higher-order theory and the first-order theory increases with increasing 

values of R/a. For a/h = 10, the difference between the deflections 

given by FSDT and HSDT is larger than those for a/h = 100. 

unsymmetric laminates (0/90) , FSDT yields higher deflections than HSDT, 

whereas for symmetric laminates HSDT yields higher deflections than FSDT 

for values of a/h = 10. 

difference between the solution predicted by the first-order theory and 

the higher-order theory is more significant, with FSDT results higher 

than HSDT, especially for antisymmetric cross-ply laminates. 

The difference between the solutions predicted by the 

For 

Note that for point-loaded shells the 

4. Natural vibration of cross-ply cylindrical shell segments 

Nondimensionalized fundamental frequencies of cross-ply cylindrical 

[Oo/9O0], shells are presented in Table 5 for three lamination schemes: 

[O0/9Oo/O0] , and [0°/900/900/00]. For thin antisymmetric cross-ply 

shells, the first-order theory underpredicts the natural frequencies 

when compared to the higher-order theory. However, for symmetric cross- 

ply shells, the trend reverses. 

5. Natural vibration of cross-ply spherical shell segments 

Nondimensionalized natural frequencies obtained using the first- 

and higher-order theories are presented in Table 6 for various cross-ply 

spherical shell segments. Analogous to cylindrical she Is, the first- 

order theory underpredicts fundamental natural frequenc es of 

antisymmetric cross-ply shells; for symmetric thick she 1s and symmetric 

shallow thin shells the trend reverses. 
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Table 2. Nondimensionalized center deflections, w = (-wh3E /q a4)103, 
of cross-ply laminated spherical she1 1 segments uGdeP 
sinusoidally distributed load (a/b = 1, R 1  = R2 = R, q, = 100) 

- 
W 

oo/900 0 O /goo /oo oo/900/900/oo 

R/a Theory a/h=100 a/h=lO a/h=100 a/h=lO a/h=100 a/h=lO 

5 FSDT 1.1948 
HSDT 1.1937 

10 FSDT 3.5760 
HSDT 3.5733 

20 FSDT 7.1270 
HSDT 7.1236 

50 FSDT 9.8717 
FSDT 9.8692 

100 FSDT 10.4460 
HSDT 10.4440 

Plate FSDT 10.6530 
R/a=m FSDT 10.6510 

11.429 
11.166 
12.123 
11.896 
12.309 
12.094 
12.362 
12.150 
12.370 
12.158 
12.373 
12.161 

1.0337 
1.0321 
2.4109 
2.4099 
3.6150 
3.6170 
4.2027 
4.2071 
4.3026 
4.3074 
4.3370 
4.3420 

6.4253 
6.7688 
6.6247 
7.0325 
6.6756 
7.1016 
6.6902 
7.1212 
6.6923 
7.1240 
6.6939 
7.1250 

1.0279 
1.0264 
2.4030 
2.4024 
3.6104 
3.6133 
4.2015 
4.2071 
4.3021 
4.3082 
4.3368 
4.3430 

6.3623 
6.7865 
6.5595 
7.0536 
6.6099 
7.1237 
6.6244 
7.1436 
6.6264 
7.1464 
6.6280 
7.1474 
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Table 3. Nondimensionalized center de f l ec t i ons ,  w = (-WE h3/q a4) 
x 103, o f  c ross-p ly  laminated spher ica l  s h e l l  s2gmen?s under 
un i fo rm ly  d i s t r i b u t e d  load 

0"/90" 0" /90 O /oo oo/900/900/oo 
R - Theory a/h=100 a/h=lO a/h=100 a/h=lO a/h=100 a/h=lO a 

5 FSDT 
HSDT 

10 FSDT 
HSDT 

20 FSDT 
HSDT 

50 FSDT 
HSDT 

100 FSDT 
HSDT 

P la te  FSDT 
m 

1.7535 
1.7519 
5.5428 
5.5388 

11.273 
11.268 
15.714 
15.711 
16.645 
16.642 
16.980 
16.977 

19.944 
17.566 
19.065 
18.744 
19.365 
19.064 
19.452 
19.155 
19.464 
19.168 
19.469 
19.172 

1.5118 
1.5092 
3.6445 
3.6426 
5.5473 
5.5503 
6.4827 
6.4895 
6.6421 
6.6496 
6.6970 
6.7047 

9.794 
10.332 
10.110 
10.752 
10.191 
10.862 
10.214 
10.893 
10.218 
10.898 
10.220 
10.899 

- 

1.5358 
1.5332 
3.7208 
3.7195 
5.6618 
5.666 
6.6148 
6.6234 
6.7772 
6.7866 
6.8331 
6.8427 

9.825 
10.476 
10.141 
10.904 
10.222 
11.017 
10.245 
11.049 
10.294 
11.053 
10.251 
11.055 
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Table 4. Nondimensionalized center  de f l ec t i on  o f  cross-p ly  spher ica l  
s h e l l  segments under p o i n t  load a t  t he  center  

- w h 3 E 2  
w = -  (- )102, a/b = 1, a/h = 10 Pan 

Center de f l ec t i on ,  w 
R/a Theory 0"/90" 0" /90 " / O "  oo/900/900/oo 

5 FSDT 
HSDT 

10 FSDT 
HSDT 

20 FSDT 
HSDT 

50 FSDT 
HSDT 

100 FSDT 
HSDT 

P1 a t e  FSDT 
m HSDT 

7.1015 
5.8953 
7.3836 
6.1913 
7.4692 
6.2714 
7.4909 
6.2943 
7.4940 
6.2976 
7.4853 
6.2987 

5.1410 
4.4340 
5.2273 
4.5470 
5.2594 
4.5765 
5.2657 
4.5849 
5.2666 
4.5861 
5.2572 
4.5865 

4.9360 
4.3574 
5.0186 
4.4690 
5.0496 
4.4982 
5.0557 
4.5065 
5.0565 
4.5077 
5.0472 
4.5081 
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Table 5 Nondimensionalized fundamental frequencies o f  cross-ply 
c y l i n d r i c a l  s h e l l  panels (see Fig. 6.1 f o r  geometry). 

0"/9O0 oo/900/oo oo/900/900/oo 

R/a Theory a/h=100 a/h=lO a/h=100 a/h=lO a/h=100 a/h=lO 

5 FSDT 
HSDT 

10 FSDT 
HSDT 

20 FSDT 
HSDT 

50 FSDT 
HSDT 

100 FSDT 
HSDT 

P la te  FSDT 
m HSDT 

16.668 
16.690 
11.831 
11.840 
10.265 
10.270 
9.7816 
9.7830 
9.7108 
9.7120 
9.6873 
9.6880 

8.9082 
9.0230 
8.8879 
8.9790 
8.8900 
8.9720 
8.8951 
8.9730 
8.8974 
8.9750 
8.8998 
8.9760 

20.332 
20.330 
16.625 
16.620 
15.556 
15.550 
15.244 
15.240 
15.198 
15.190 
15.183 
15.170 

12.207 
11.850 
12.173 
11.800 
12.166 
11.791 
12.163 
11.790 
12.163 
11.790 
12.162 
11.790 

20.361 
20.360 
16.634 
16.630 
15.559 
15.550 
15.245 
15.230 
15.199 
15.190 
15.184 
15.170 

12.267 
11.830 
12.236 
11.790 
12.230 
11.780 
12.228 
11.780 
12.227 
11.780 
12.226 
11.780 
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Table 6. Nondimensionalized fundamental f requencies o f  cross-p ly  
laminated spher ica l  s h e l l  segments 

a2 - 
h 

- 
w = w - Jp/E2 

0"/90" 0" /goo /oo oo/900/900/oo 

R/a Theory a/h=100 a/h=lO a/h=100 a/h=lO a/h=100 a/h=lO 

5 FSDT 
HSDT 

10 FSDT 
HSDT 

20 FSDT 
HSDT 

50 FSDT 
HSDT 

100 FSDT 
HSDT 

P la te  FSDT 
HSDT 

28.825 
28.840 
16.706 
16.710 
11.841 
11.84 
10.063 
10.06 
9.7826 
9.784 
9.6873 
9.6880 

9.2309 
9.3370 
8.9841 
9.0680 
8.9212 
8.999 
8.9034 
8.980 
8.9009 
8.977 
8.8998 
8.9760 

30.993 
31.020 
20.347 
20.350 
16.627 
16.62 
15.424 
15.42 
15.244 
15.24 
15.183 
15.170 

~~ 

12.372 
12.060 
12.215 
11.860 
12.176 
11.81 
12.165 
11.79 
12.163 
11.79 
12.162 
11.790 

31.079 
31.100 
20.380 
20.380 
16.638 
16.63 
15.426 
15.42 
15.245 
15.23 
15.184 
15.170 

12.437 
12.040 
12.280 
11.840 
12.240 
11.79 
12.229 
11.78 
12.228 
11.78 
12.226 
11.780 
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6.3 Approximate (Finite-Element) Solutions 

6.3.1 Bending Analysis 

1. Linear analysis of a rectangular plate under uniformly distributed 
1 oad . 
The geometry and boundary conditions for the problem are shown in 
- 

Fig. 6.3. The plate is assumed to be made of steel (E = 30 x lo6 psi 

and v = 0.3). The problem was also solved by Timoshenko [77], Herrmann 

[72] and Prato [78]. 

displacement and bending moments obtained by various investigators 

(using the linear theory). 

and others is very good, verifying the accuracy of the theory and the 

finite element formulation. 

Figures 6.3-6.5 contain plots of the transverse 

The agreement between the present solution 

2. Nonlinear analysis of rectangular laminates under uniformly 
distributed load 

Figure 6.6 contains load-deflection curves for a simply supported 

square orthotropic plate under uniformly distributed load [23]. The 

following geometric and material properties are used: 

a = b = 12 in., h = 0.138 in. 
6 0.37 x 10 psi El = 3 x 10 psi, E2 = 1.28 x 10 psi, GI2 = 613 = 623 = 6 6 

The experimental results and classical solutions are taken from the 

paper by Zaghloul and Kennedy [79]. The agreement between the present 

solution and the experimental solution is extremely good. It is clear 

that, even for thin plates, the shear deformation effect is significant 

in the nonlinear range. 
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4, ~~ 

0 
L 

- PRESENT SOLuTIOr4 (LINEAR ANALYSIS) 

HERRMA” 

a PRATO 

A TIWSHENKO 
0 / 

/ C W E D  

/ SS = SIfVLY SUPPORTED 

THICKNESS = 0,O~‘’ 
0 I I I 

0 0 2  o14 0,6 018 
DISTANCE ALONG X i  (IN.) 

Figure 6.3 Comparison o f  the transverse deflection o f  a clamped- 
simply-supported-free isotropic  rectangular p la te  
under uniformly d is t r ibu ted  transverse load,, 



59 

0 

b 
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H E R R W "  
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0 PRATO 

A TIMOSHENKO 

002 0,4 0,6 008 
DISTANCE ALONG X2 (in.) 

Figure 6.4 Comparison o f  the bending moment along the line x1=0.4" 
for the problem of Figure 6.3. 
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0 

DISTANCE ALONG X i  ( I N . )  

Figure 6.5 Comparison o f  the bending moment M6 along the line x2=0.4" 
f o r  the problem i n  Figure 6.3. 
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EXPERIMENTAL - - PRESEM' --- 0,4 

n 

z 
- 

v" 0,3 
2 
0 - 
G 
k 012 

4 
* 0 8 1  

111 
oc 
W 

w 

0 
0 0,4 018 182 1 '6  280 

LOAD INTENSITY (PSI) 

Figure 6.6 Center deflection versus load in tens i ty  fo r  a 
simply 'supported square orthotropic p l a t e  
under uniformly distributed transverse load.  
The following Simply supported boundary condi- 
t ions were used : 

V = W = $y = Idx = Px = 0 on s ide  x = .a 

U = W = $  = M  = P  = O o n s i d e y = b  
X Y Y  
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Figure 6.7 contains load-deflection curves for a clamped 

bidirectional 1 aminate [ 0/90/90/0 I under uniformly distributed load. 
The geometric parameters and layer properties are given by 

a = b = 12 in., h = 0.096 in., 
6 6 El = 1.8282 x 10 psi, E2 = 1.8315 x 10 psi, 

6 G12 = 613 = G23 = 3.125 x 10 psi, v12 = v13 = '23 = 0.2395 

.The experimental results and the classical laminate solutions are taken 

from [79]. The present solution is in good agreement with the 

experimental results, and the difference is attributed to possible 

errors in the simulation of the material properties and boundary 

conditions. 

3. Orthotropic cylinder subjected to internal pressure. 

Consider a clamped orthotropic cylinder with the following 

geometric and material properties (see Fig. 6.8) 

R1 = 20 in. R2 = - 
6 6 El = 2 x 10 psi, E2 = 7.5 x 10 psi 

1.25 x 10 psi 6 
G12 = 

6 613 = 623 = 0.625 x 10 psi , h = 1 in. 

= 0.25 - 
'12 = '13 - "23 

a = 10 in. , P = 6.41/~ psi 

This problem has an analytical solution (see 1771) for the linear 

case, and Rao [47] used the finite-element method to solve the same 

problem. Both solutions are based on the classical theory. The center 

deflections from [771 and [471 are 0.000367 in. and 0.000366 in., 

respectively. Chao and Reddy 1501 obtained 0.0003764 in. and 0.0003739 
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INTENSITY OF TRANSVERSE LOAD (PSI) 

Figure6.7 Center def lect ion versus load intensi ty  fo r  a 
clamped (CC-1) 
under uniform transverse l o a d  ( v o n  Karman theory). 

square laminate [0 /90 /90 /O ] 

cc-1: lJ = \I = \J = $ - - qY ’= 0 on a l l  

f o u r  cld;?oed edges 
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in. using the finite-element model based on the first-order shear 

deformation theory and 3-D degenerate element, respectively. The 

current result is 0.0003761 in., which is closer to Chao and Reddy [501, 

as expected. 

For the nonlinear analysis of the same problem, the present results 

are compared to those of Chang and Sawamiphakdi [80 ]  and Chao and Reddy 

[50] in Fig. 6.9, which contains plots of the center deflection versus 

the load obtained by various investigators. The agreement between the 

various results is very good. 

4. Nine-layer cross-ply spherical shell segment subjected to uniform 

1 oadi ng . 
Consider a nine-layer [Oo/900/Oo.. . / O o ]  cross-ply laminated 

spherical shell segment with the following material and geometric data: 

, a = b = 100 in. R1 = R2 = 1000 in. 
6 h = 1 in. , El = 40 x 10 psi 

6 0.5 x 10 psi E2 = 10 psi , G12 = 0.6 x 10 psi , 613 = 623 = 6 6 

= 0.25 '12 = '13 = '23 
The present results are compared with those obtained by Noor and 

Hartley [52 ]  and Chao and Reddy [50 ]  in Fig. 6.10. Noor and Hartley 

used mixed i soparametric elements with 13 degree-of-freedom per node 

which is based on a shear deformation shell theory. 

agree with both investigations. 

The present results 
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Figure 6.8 Geometry and boundary conditions for the octant 
o f  the clamped cylindrical shell. 
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PRESENT SOLUTION 
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CHAO AND REDDY 

& 
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VERTICAL DEFLECTION ( IN, )  

Figure  6.9 Center deflection versus l o a d  f o r  the clamped cylinder 
with internal pressure. 
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PRESENT SOLUTION 

0 NOOR AND HARTLEY 

A CHAOAND REDDY 

- 

1 I 1 

1 2 3 4 
" D I E N S I W L I Z E D  CENTER DEFLECTION, W/h 

Figure 6.10 Nonlinear bending of a nine-layer cross-ply spherical 
shell (0"/90"/0"/90"/ ... /o"). 
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6.3.2 V ib ra t ion  Analysis 

Equation (5.24) can be expressed i n  the  a l t e r n a t i v e  form as 

where 

For f r e e  v i b r a t i o n  analysis,  we wish t o  e l im ina te  { h 2 }  as fo l lows.  

Eq. (6.1) we have 

From 

[ K l l I { A l }  + IK121EA21 = - I M 1 1 1 { q  

[ K 2 l l { A l 1  + [K221{"21 = 0 

(6.3) 

(6.4) 

From (6.4) we have, 

{A21 = -[K221-1[K211{A11 (6.5) 

S u b s t i t u t i n g  Eq. (6.5) i n t o  Eq. (6.3), we obtain,  

([K111 - [Kl2I [ K 2 2 1 - 1 1 K z ~ 1 ) { A 1 1  = - [MI11 {A11 

(K1 - u 2 1 M 1 ) I A 1 1  = 0 

(6.6) 

For t h e  f r e e  v i b r a t i o n  case, Eq. (6.6) reduces t o  

(6.7) 

where w i s  the na tura l  f requencies o f  the  system. 

1. Natural  frequencies of a two-layer [Oo/900]  laminated p l a t e .  

The geometric and mater ia l  p r o p e r t i e s  used are 

a = b = 100 in.  , h = 0.1 in.  

El = 40 x 10 p s i  , E2 = 10 p s i .  6 6 

Vi3 = V23 = 0.25 G12 = G13 = GZ3 = 0.5 x 10 p s i  , u12 - - 6 

2 4  
p = 1 lb-sec / i n  
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The boundary conditions are shown in Fig. 6.11, which also contains 

the plots of the ratios wNL/wL versus wo/h. 

nonlinear and linear natural frequencies, and wo is the normalized 

center deflection of the first node. The results are compared with 

those of Chia and Prabhakara [81], and Reddy and Chao [82]. The present 

results are slightly higher compared to those obtained by the classical 

Here wNL and wL denote the 

and first-order shear deformation theories. 

2. Natural frequencies of two-layer [45"/-45'1 angle-ply square plate. 

The material and geometric parameters used are 

El = 10 x 10 psi , E2 = 10 psi 
6 

p = 1 lb-sec. /in , a = b = 100 in. , h = 0.1 in. 

6 6 

= 0.3 G12 = 613 = 623 = 0.3333 x 10 psi , w12 = w13 = ~ 2 3  
2 4  

The boundary conditions used are shown in Fig. 6.12, which also 

contains plots of uNL/uL versus wo/h. 

available in the literature for comparison. 

For this case, no results are 

3. Natural vibration of two-layer [Oo/9O0] cross-ply plates. 

Consider a two-layer cross-ply plate with the following geometric 

and material properties: 
6 6 El = 7.07 x 10 psi , E2 = 3.58 x 10 psi 

- ~ 2 3  = 0.3 6 G12 = 623 = 613 = 1.41 x 10 psi , w12 = vi3 - 
2 

p = 1 lb-sec. /in.4 , a/h = 1000 , a = 100 in. 

The results of uNL/uL versus wo/h are shown in Fig. 6.13. Compared 

to the results of Reddy [82] and Chandra and Raju (831, the results of 

the present study are in general a little higher, 

present results for natural frequencies are higher than those predicted 

by the first-order theory indicates that the additional inertia terms 

The fact that the 

contribute to the increase of natural frequencies. 
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- PRESENT SOLUTION 

0 CHIA AND Pw\f3HAw\RA 

REDDY 

f X l w = + / = O  

u = o  
+,= 0 W = @2= 

- 
0 

Figure 6.11 Fundamental frequencies of a two-layer cross-ply (0 '190")  
square laminate under simply-supported boundary conditions. 
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0 086 182 1,'s 2 8 - 4  3 8  0 
AFIPLITUDE TO THICKNESS RATIO, W o / h  

Figure 6.12 Ratio o f  nonlinear to linear frequency versus amplitude 
to thickness ratio for two-layer 'angle-ply square plate 
( 4 5 O / - 4 5 O ) .  
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BC 1 boundary cond i t i  ons  : 

u = w = $ l = o ;  M Z =  P2 = O  a long  x2 = b/2 

v = w =  ~ ~ ' 0  ; M1 = P 1  = O  a l o n g  x = a / 2  
u = o 1 = 0 ;  1'1 = P  = O  a long  x = 0 

v =  02=0; M = P  = O  a long  x = 0 

1 
6 6  1 

6 6  2 

Figure 6.13 Ratio of the nonlinear t o  l inear  frequency versus the 
amplitude t o  thickness r a t io  of a two-layer cross-ply 
(oo/900)  square laminate. 



7. SUMMARY AND RECOMMENDATIONS 

7.1 Summary and Conclusions 

The present study dealt with the following major topics: 

The development of a variationally-consistent, third-order 

shear deformation theory of laminated composite doubly-curved 

shells. The theory accounts for (a) the parabolic variation 

of the transverse shear strains, and (b)  the von Karman 

strains. 

coefficients. 

The development of the closed-form solutions (for the linear 

theory) for the simply supported cross-ply laminates. These 

solutions are used as a check for the numerical analysis of 

she1 1s. 

The construction of a mixed variational principle for the 

It does not require the use of the shear correction 

third-order theory that includes the c 

first-order theory as special cases. 

The development and application o f  the 

of the third-order theory for laminate 

assical theory and the 

finite-element model 

composite shells, 

accounting for the geometric nonlinearity in the sense of von 

Karman (moderate rotations). 

The increased accuracy of the present third-order theory (for thin 

as well as thick laminates) over the classical or first-order shear 

deformation theory is demonstrated via examples that have either the 

three-dimensional elasticity solution or experimental results. Many of 

the other results on bending and vibration analysis included here can 

serve as references for future investigations. 

73 
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7.2 Some Comments on Mixed Models 

The displacement model of the classical laminate theory requires 
1 the use of C elements, which are algebraically complex and 

computational ly expensive. 

simple and allows the direct computation of the bending moments at the 

nodes. The inclusion of the bending moments as nodal degrees of freedom 

not only results in increased accuracy of the average stress compared to 

that determined from the displacement model but it allows us to 

determine stresses at the nodes. This feature is quite attractive in 

contact problems and singular problems in general. 

that the bending moments are not required to be continuous across 

interelement boundaries, as was shown in Chapter 4. 

based on the shear deformation theories also have the same advantages, 

except that the displacement model of the first-order shear deformation 

theory is a so a Co element. 

programming efforts are less with the mixed elements. 

The Co mixed elements are algebraically 

It should be noted 

The mixed models 

In general , the formulative and 

7 . 3  Recommendations 

The theory presented here can be extended to a more general theory; 

for example, the development of the theory in general curvilinear 

coordinates, and for more general shells (than the doubly-curved shells 

considered here). Extension o f  the present theory t o  include nonlinear 

material models is awaiting. Of course, the inclusion of thermal loads 

and damping in the present theory is straight forward. 

AcknowZedgements The authors are grateful to Dr. Norman Knight, Jr. for 
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APPENDIX B 

STIFFNESS COEFFICIENTS FOR THE MIXED MODEL 
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